МИНИСТЕРСТВО ОБРАЗОВАНИЯ И МОЛОДЕЖНОЙ ПОЛИТИКИ СВЕРДЛОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СВЕРДЛОВСКОЙ ОБЛАСТИ «КАМЕНСК-УРАЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ» (ГАПОУ СО «КУПК»)

СОГЛАСОВАНО Председатель цикловой комиссии Технологии машиностроения

_______ Неверов И.А. « 28 » — 08 — 2020 Г.

УТВЕРЖДАЮ

Директор

ГАПОУ СО «КУПК»

Токарева Н.Х. 2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.15 Гидравлические и пневматические системы

15.02.15 Технология металлообрабатывающего производства

Квалификация: Техник-технолог

Рабочая программа учебной дисциплины **ОП.15 Гидравлические и пневматические системы** разработана на основе Федерального государственного образовательного стандарта СПО по специальности 15.02.15 Технология металлообрабатывающего производства, утвержденного приказом Минобрнауки России от 9 декабря 2016 г. № 1561.

Организация — **разработчик:** ГАПОУ СО «Каменск-Уральский политехнический колледж», г. Каменск-Уральский.

Разработчики: Неверов И.А. – преподаватель высшей категории ГАПОУ СО «Каменск-Уральский политехнический колледж»

Проведена внутренняя техническая и содержательная экспертиза программы учебной дисциплины ОП.15 Гидравлические и пневматические системы в рамках цикловой комиссии.

Рассмотрено на заседании цикловой комиссии Механических дисциплин (протокол № 1 от 28.08.2020 г.) и одобрено методическим советом (протокол № 1 от 31.08.2020 г.)

Разработчики	All	Неверов И.А.
Председатель предметно-цикловой	1100	
комиссии Технологии машиностроения	HE	Неверов И.А.

СОДЕРЖАНИЕ

1.ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2.СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	7
3.УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	12
4.КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ	13
ДИСЦИПЛИНЫ	
5. ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ПРОГРАММЫ В ДРУГИХ ООП	15

1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

1.1. Область применения программы:

Программа учебной дисциплины является частью основной образовательной программы в соответствии с ФГОС по специальностям СПО **15.02.15 Технология** металлообрабатывающего производства, входящей в укрупнённую группу специальностей **15.00.00 Машиностроение.**

1.2. Место дисциплины в структуре основной профессиональной образовательной программы:

Данная учебная дисциплина относится к профессиональному циклу основной профессиональной образовательной программы.

Учебная дисциплина наряду с учебными дисциплинами общепрофессионального цикла обеспечивает формирование общих компетенций для дальнейшего освоения профессиональных модулей.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен уметь:

- читать и понимать чертежи, и технологическую документацию;
- проводить сопоставительное сравнение, систематизацию и анализ конструкторской и технологической документации;
- организовывать эксплуатацию технологических сборочных приспособлений в соответствии с задачами и условиями технологического процесса;
- эксплуатировать технологические сборочные приспособления для удовлетворения требования технологической документации и условий технологического процесса;
- осуществлять оценку работоспособности и степени износа узлов и элементов металлорежущего оборудования;
- организовывать регулировку механических и электромеханических устройств металлорежущего и аддитивного оборудования;
- оценивать точность функционирования металлорежущего оборудования на технологических позициях производственных участков;
- осуществлять оценку работоспособности и степени износа узлов и элементов сборочного оборудования;
- определять причины неисправностей и отказов систем сборочного оборудования;
- выбирать методы и способы их устранения.

В результате освоения дисциплины обучающийся должен знать:

- -основы электротехники, электроники, гидравлики и программирования в пределах выполняемой работы;
- правила настройки, регулирования универсальных и специальных приспособлений контрольно-измерительных инструментов, приборов и инструментов для автоматического измерения деталей.

В результате освоения дисциплины развиваются следующие компетенции:

OK 01	Выбирать способы решения задач профессиональной деятельности, применительно к
	различным контекстам.
ОК 02	Осуществлять поиск, анализ и интерпретацию информации, необходимой для
	выполнения задач профессиональной деятельности.
OK 03	Планировать и реализовывать собственное профессиональное и личностное развитие.
OK 04	Работать в коллективе и команде, эффективно взаимодействовать с коллегами,
	руководством, клиентами.
OK 05	Осуществлять устную и письменную коммуникацию на государственном языке с
	учетом особенностей социального и культурного контекста.
OK 09	Использовать информационные технологии в профессиональной деятельности.
OK 10	Пользоваться профессиональной документацией на государственном и иностранном
	языках.

ПК 1.2.	Осуществлять сбор, систематизацию и анализ информации для выбора оптимальных
	технологических решений, в том числе альтернативных в соответствии с принятым
	процессом выполнения своей работы по изготовлению деталей.
ПК 1.9	Организовывать эксплуатацию технологических приспособлений в соответствии с
	задачами и условиями технологического процесса механической обработки заготовок
	и/или аддитивного производства сообразно с требованиями технологической
	документации и реальными условиями технологического процесса.
ПК 2.2.	Осуществлять сбор, систематизацию и анализ информации для выбора оптимальных
	технологических решений, в том числе альтернативных в соответствии с принятым
	процессом выполнения своей работы по сборке узлов или изделий.
ПК 2.9.	Организовывать эксплуатацию технологических сборочных приспособлений в
	соответствии с задачами и условиями технологического процесса сборки узлов или
	изделий сообразно с требованиями технологической документации и реальными
	условиями технологического процесса.
ПК 3.1.	Осуществлять диагностику неисправностей и отказов систем металлорежущего и
	аддитивного производственного оборудования в рамках своей компетенции для выбора
	методов и способов их устранения.
ПК 3.2.	Организовывать работы по устранению неполадок, отказов металлорежущего и
	аддитивного оборудования и ремонту станочных систем и технологических
	приспособлений из числа оборудования механического участка в рамках своей
	компетенции.
ПК 4.1.	Осуществлять диагностику неисправностей и отказов систем сборочного
	производственного оборудования в рамках своей компетенции для выбора методов и
	способов их устранения.
ПК 4.2.	Организовывать работы по устранению неполадок, отказов сборочного оборудования и
	ремонту станочных систем и технологических приспособлений из числа оборудования
	сборочного участка в рамках своей компетенции.

1.4. Рекомендуемое количество часов на освоение программы дисциплины:

максимальной учебной нагрузки обучающегося 92 часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося 86 часов, самостоятельной работы обучающегося 6 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	92
Обязательная аудиторная учебная нагрузка (всего)	86
Лабораторные, практические работы обучающегося (всего)	14
Самостоятельная работа обучающегося (всего)	6
Промежуточная аттестация проводится в форме:	экзамен

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся		Урове нь освоен ия	Осваиваемые элементы компетенций
1	2	3	4	
1. Гидравлические систем		58		
Тема 1.1. Основы	Содержание учебного материала	12		
гидростатики	1 Задачи и основы гидростатики. Ознакомление с основными понятиями о	2	2	OK 01, OK 02,
	силах, действующих на жидкость, находящуюся в покое; о причинах			OK 03, OK 04,
	гидростатического парадокса; о величинах, влияющих на силу давления			OK 05 , OK 09,
	жидкости на стенки			ОК 10,ПК1.2,.
	2 Понятие гидростатического давления; понятие о поверхности равного	2	2	ПК 1.9,ПК 2.2,ПК
	давления и свойствах сообщающихся сосудов; закон Архимеда.			2.9,ПК 3.1,ПК 3.2.,
	3 Равновесие тел в покоящейся жидкости. Условия плавания и	2	2	ПК 4.1, ПК 4.2.
	устойчивости. Использование законов гидростатики в технике (измерение			
	давления, вакуума, плотности, гидравлический пресс).			
	4 Гидростатическое давление. Основное уравнение гидростатики. Закон	2	2	
	Паскаля. Поверхность равного давления. Сообщающиеся сосуды.			
	5 Гидростатический парадокс. Давление жидкости на стенки, стенки труб	2	2	
	и вертикальных резервуаров. Определение плотности тела, погруженного в			
	жидкость.			
	6 Определение плотности одной из жидкостей с помощью сообщающихся	2	2	
	сосудов.			
Тема 1.2. Основы	Содержание учебного материала	16		
гидродинамики	1 Гидравлические и пневматические приводы как основное средство		2	OK 01, OK 02,
	механизации и автоматизации технологических процессов и процессов	2		OK 03, OK 04,
	управления различными объектами. О роли и значении гидродинамики в			OK 05 , OK 09,
	конструировании и работе машин и аппаратов.			ОК 10,ПК1.2,.
	2 Применение гидравлических приводов в качестве исполнительных		2	ПК 1.9,ПК 2.2,
	устройств в станках и автоматических линиях, роботах и манипуляторах,	2		ПК2.9,ПК 3.1,ПК
	системах управления различных механизмов			3.2.,ПК 4.1, ПК 4.2.

			2		
	3	Основные физические характеристики жидкостей и газов: плотность,	2	2	•
		удельный объем, удельный вес, температурный коэффициент объемного			•
		расширения, сжимаемость, вязкость, растворимость газов в жидкости.		_	
	4	Режимы движения жидкости; движения жидкостей по трубам и	2	2	
		определение гидравлических сопротивлений; истечение жидкостей из			
		отверстий и насадок. Роль и значение гидродинамики в конструировании			
		и работе машин и аппаратов.			
	5	Уравнение Бернулли для идеальной жидкости. Физический смысл	2	2	
		величин и составляющих слагаемых уравнения.			
	6	Уравнения Бернулли для реальной жидкости. Режима движения.	2	2	
	7	Потери напора по длине и на местные сопротивления при движении	2	2	
		жидкости по трубам, определение потерь напора. Определение			
		скоростного напора и скорости движения жидкости в трубопроводе с			
		помощью трубки Пито и пьезометра.			
	Пр	рактическая работа №1	2		
	1	Исследование режима движения в зависимости от скорости истечения на	2	2	
		лабораторной установке.			
Тема 1.3. Гидравлические	Co	держание учебного материала	20		
машины	1	Классы гидравлических машин (гидродвигатели, насосы), их	2	2	OK 01, OK 02,
		назначение. Гидротурбины, назначение, классификация по принципу			OK 03, OK 04,
		действия, область применения.			OK 05 , OK 09,
	2	Насосы. Классификация по принципу действия: объемные струйные,	2	2	ОК 10,ПК1.2,.
		область применения.			ПК 1.9,ПК 2.2,ПК
	3	Конструктивные особенности основных типов насосов, применяемых в	2		2.9,ПК 3.1,ПК 3.2.,
		промышленности: центробежные, поршневые, шестеренные, винтовые,		2	ПК 4.1, ПК 4.2.
		пластинчатые, водокольцевые вакуумные.			
	4	Схема насосной установки. Назначение основных элементов. Принцип	2	2	
		действия различных видов насосов.			
	5	Рабочие характеристики насосов. Выбор марки насоса по рабочей	2	2	
		характеристике в зависимости от технологических требований.			
	6	Условия применения насосов в зависимости от технологических	2	2	
		требований. Выбор насоса для конкретной машины, аппарата.			
	7	Подбор контрольной и пускорегулирующей аппаратуры для насосной	2	2	

		установки. Определение простейших типов неисправностей в работе			
		насосной установки (падение давления всасывания, нагнетания)			
	Пр	рактическое занятие 2, 3, 4	6		
	1	Изучение конструкции пластинчатого насоса	2	2	
	2	Изучение конструкции лопастного насоса	2	2	
	3	Экспериментальное определение механических характеристик	2	2	
		нерегулируемого гидропривода			
	Ca	мостоятельная работа	2		
	По	дготовить сообщения к выступлению на семинаре по теме «Выбор насосов			
	по	справочным материалам»			
Пневматические системы			38		
Тема 1.4 Газовые законы,	Co	держание учебного материала	6		
законы термодинамики,	1	Основные законы состояния идеальных газов (Бойля-Мариотта, Гей-	2	2	OK 01, OK 02,
основные газовые		Люсакка, Шарля). Основное уравнение термодинамики. Уравнение			OK 03, OK 04,
процессы		Менделеева-Клапейрона. Газовая и универсальная газовая постоянные			ОК 05,ОК 09,
	2	Первый и второй законы термодинамики. Работа расширения или	2	2	ОК 10,ПК1.2,.
		сжатия газа. Внутренняя энергия. Понятие об энтропии и энтальпии.			ПК 1.9,ПК 2.2,ПК
	3	Идеальный, реальный газ, роль термодинамических процессов в	2	3	2.9,ПК 3.1,ПК 3.2.,
		технологических процессах, в конструкции и принципах действия			ПК 4.1, ПК 4.2.
		технологического оборудования; параметры рабочих тел: энтропия и			
		энтальпия.			
Тема 1.5	Co	держание учебного материала	8		
Термодинамические	1	Идеальный термодинамический цикл Карно и его свойства. Прямые и	2	2	OK 01, OK 02,
циклы, использование в		обратные циклы. Термических КПД и холодильный коэффициент.			OK 03, OK 04,
промышленных установках		Двигатели внутреннего сгорания (ДВС). Устройство четырехтактного			ОК 05,ОК 09,
		двигателя. Цикл ДВС на примере Отто в Р – диаграмме			ОК 10,ПК1.2,.
	2	Одноступенчатая холодильная машина с переохлаждением жидкости	2	3	ПК 1.9,ПК 2.2,ПК
		перед регулирующим вентилем. Построение цикла в диаграмме. Влажный			2.9,ПК 3.1,ПК 3.2.,
		воздух. Основные параметры построения процессов нагрева, охлаждения,			ПК 4.1, ПК 4.2.
		увлажнения и осушения в диаграмме i-d.			
		Построение цикла Ренкина в i–S диаграмме и определение его параметров.	2	2	
	3	Построение процессов осушения, увлажнения, нагрева, охлаждения			
		влажного воздуха и определение его параметров в і-d диаграмме			

	Построение цикла одноступенчатой установки с переохлаждением перед дросселирующим вентилем в P-i диаграмме и определение параметров цикла.	2	2	
Самостоятельная работа обучающихся		2		
	Подготовить сообщения к выступлению на семинаре по теме «Меры	2	=	
	безопасности при эксплуатации станочного оборудования».	2		
	Содержание учебного материала	14		
	1 Назначение пневмосистем и пневмоэлементов в конструкциях машин и			OK 01, OK 02,
	аппаратах Конструкция и принципы действия основных элементов и	2	2	OK 03, OK 04,
	устройств пневматических систем.			OK 05,OK 09,
	2 Конструктивные элементы пневмосистем: (пневмосопротивления	2	2	ОК 10,ПК1.2,.
	нерегулируемые, мембраны, мембранные пакеты, проточные и глухие			ПК 1.9,ПК 2.2,ПК
	камеры, система «сопло–заслонка»). Основные устройства пневмосистем:			2.9,ПК 3.1,ПК 3.2.,
	редуктор давления, пневмоусилители, сумматоры, устройства умножения			ПК 4.1, ПК 4.2.
	и деления на постоянный коэффициент. Замену элементов УСЭППа.			_
Тема 1.6 Основные	3 Подключение средств пневматических систем к питанию и производство	2	2	
элементы пневматических	монтажа пневмопроводов. Основные преимущества и недостатки			
систем	пневмосистем. Принципы построения пневмосистем (принцип			
	компенсации перемещений, принцип компенсации сил и расходов)		2	
	4 Пневмосеть и кондиционеры рабочего газа. Система подготовки	2	2	
	сжатого воздуха. Основные требования к монтажу, наладке и			
	эксплуатации элементов пневмосистем.			_
	5 Пневматические машины. Компрессоры. Пневматические двигатели			
	Практическая работа 5, 6	4		
	1 Изучение конструкции гидрозамка одностороннего	2	2	
	2 Исследование характеристик предохранительного клапана, характеристик	2	2	
	дросселя			
1.7 Элементы	Содержание учебного материала	10		
гидравлического и	1 Назначение, классификация, применение гидро- пневмопривода.	2	2	OK 01, OK 02,
пневматического приводов.	Пневмогидравлические двигатели. Насосные, гидроаккумуляторные и			OK 03, OK 04,
Комбинированные системы	магистральные гидроприводы. Пневмодвигатели (пневмомоторы,			OK 05,OK 09,
	пневмоцилиндры, мембранные аппараты).			ОК 10,ПК1.2,.
	2 Гидравлические исполнительные механизмы. Назначение	2	2	ПК 1.9,ПК 2.2, ПК

	конструкции, принцип действия.			2.9,ПК 3.1,ПК 3.2.,
	3 Пневматические исполнительные механизмы (мембранные и поршневые).	2	2	ПК 4.1, ПК 4.2.
	4 Назначение, конструкция и принцип действия мембранного	2		
	исполнительного механизма с позиционером.		2	
	Практическая работа №7	2		
	1 Экспериментальное определение характеристик гидропривода с	2	2	
	установкой дросселя в линию нагнетания в линию слива.			
Самостоятельная работа		2		
Подготовиться к экзамену		2		
Итого		92		

Для характеристики уровня освоения учебного материала используются следующие обозначения:

- 1 ознакомительный (воспроизведение информации, узнавание (распознавание), объяснение ранее изученных объектов, свойств и т.п.);
- 2 репродуктивный (выполнение деятельности по образцу, инструкции или под руководством);
- 3 продуктивный (самостоятельное планирование и выполнение деятельности, решение проблемных задач).

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Для реализации программы учебной дисциплины должны быть предусмотрены следующие специальные помещения:

Кабинет «Монтажа, технической эксплуатации и ремонта промышленного оборудования», оснащенный оборудованием и техническими средствами обучения: индивидуальные рабочие места для обучающихся, рабочее место преподавателя, классная доска, интерактивная доска, оргтехника, персональный компьютер с лицензионным программным обеспечением.

3.2. Информационное обеспечение реализации программы

Для реализации программы библиотечный фонд образовательной организации должен иметь издания печатные и электронные образовательные и информационные ресурсы, рекомендуемых для использования в образовательном процессе

3.2.1. Печатные издания:

- 1. Трифонова, Г. О. Гидропневмопривод: следящие системы приводов: учебное пособие для среднего профессионального образования / Г. О. Трифонова, О. И. Трифонова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 140 с. (Профессиональное образование). ISBN 978-5-534-13670-8. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/466285
- 2. ические системы автоматики : учебное пособие для среднего профессионального образования / М. Ю. Рачков. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 264 с. (Профессиональное образование). ISBN 978-5-534-09114-4. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453774
- 3. Аверьянова И.О. Технологическое оборудование. М., Форум, 2007
- 4. Аверьянова И.О., Клепиков В.В. Технология машиностроения. Высокоэнергетические и комбинированные методы обработки:
- 5. Учебное пособие. М. «ФОРУМ ИНФРА-М», 2008. 304 с.
- 6. Баранчиков В.И. Прогрессивные режущие инструменты и режимы резания металлов.
- 7. Лепёшкин А.В. Гидравлические и пневматические системы- Издательский центр «Академия», 2004, -336с.
- 8. Рыжкин А.А. Обработка материалов резанием. РнД., Феникс, 2009
- 9. Серебреницкий, П.П., Схиртладзе А. Г. Программирование автоматизированного оборудования. Учебник для вузов в 2ч. Часть 1: Дрофа Москва, 2008. 250

3.2.2. Электронные издания (электронные ресурсы)

Интернет-ресурсы:

- 1 Электронный ресурс: Робототехника и роботы. Форма доступа http://www.prorobot.ru
- 2 Открытый технический форум по робототехнике. Форма доступа http://roboforum.ru/
- 3 Nordica Sterling: промышленные роботы, дуговая сварка, сварочные роботы.

Форма доступа http://www.nordicasterling.com/

- 4 Электронный ресурс: Робототехнические системы. Форма доступа http://rbt-systems.ru/.
- 5 Электронный ресурс «Единое окно доступа к образовательным ресурсам».

Форма доступа: http://window.edu.ru

6 Электронный ресурс «Федеральный центр информационно-образовательных ресурсов».

Форма доступа: http://fcior.edu.ru

7 Электронный ресурс «Машиностроение». Форма доступа: http://www.mashportal.ru/

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, экзамена, а также выполнения обучающимися индивидуальных заданий.

Результаты обучения	Виды и формы контроля	Формируемые компетенции
Уметь		
- читать и понимать чертежи, и технологическую документацию;	Диагностическая контрольная работа Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- проводить сопоставительное сравнение, систематизацию и анализ конструкторской и технологической документации;	Диагностическая контрольная работа Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- организовывать эксплуатацию технологических сборочных приспособлений в соответствии с задачами и условиями технологического процесса;	Диагностическая контрольная работа Текущий контроль (практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- эксплуатировать технологические сборочные приспособления для удовлетворения требования технологической документации и условий технологического процесса;	Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- осуществлять оценку работоспособности и степени износа узлов и элементов металлорежущего оборудования;	Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- организовывать регулировку механических и электромеханических устройств металлорежущего и аддитивного оборудования;	Текущий контроль(практические занятия, самостоятельная работа,)	OK 01, OK 02, OK 03, OK 04, OK 05,OK 09, OK 10,ΠΚ1.2,.

	Промежуточный контроль (экзамен),	ПК 1.9,ПК 2.2,ПК 2.9,ПК 3.1,ПК 3.2.,ПК 4.1,ПК 4.2.
- оценивать точность функционирования металлорежущего оборудования на технологических позициях производственных участков;	Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- осуществлять оценку работоспособности и степени износа узлов и элементов сборочного оборудования;	Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- определять причины неисправностей и отказов систем сборочного оборудования;	Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
- выбирать методы и способы их устранения.	Текущий контроль(практические занятия, самостоятельная работа,) Промежуточный контроль (экзамен),	OK 01, OK 02, OK 03, OK 04, OK 05, OK 09, OK 10, ПК 1.2,. ПК 1.9, ПК 2.2, ПК 2.9, ПК 3.1, ПК 3.2., ПК 4.1, ПК 4.2.
Знать		
-основы электротехники, электроники, гидравлики и программирования в пределах выполняемой работы;	Текущий контроль(практические занятия, самостоятельная работа Промежуточный контроль(экзамен),	ОК 01, ОК 02, ОК 03, ОК 04, ОК 05,ОК 09, ОК 10,ПК1.2,. ПК 1.9,ПК 2.2,ПК 2.9, ПК 3.1,ПК 3.2., ПК 4.1, ПК 4.2.
- правила настройки, регулирования универсальных и специальных приспособлений контрольно- измерительных инструментов, приборов и инструментов для автоматического измерения деталей.	Текущий контроль(практические занятия, лабораторная работа, самостоятельная работа,) Промежуточный контроль (экзамен),	ОК 01, ОК 02, ОК 03, ОК 04, ОК 05,ОК 09, ОК 10,ПК1.2,. ПК 1.9,ПК 2.2,ПК 2.9, ПК 3.1,ПК 3.2., ПК 4.1, ПК 4.2.

5. ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ПРОГРАММЫ В ДРУГИХ ООП

Рабочая программа может быть использована для обучения укрупнённой группы профессий и специальностей **15.00.00 Технология машиностроения.**